
Automatic Curriculum Learning (AutoCL) for Hard Exploration Environments:
Rubik’s Cube as an Example

Kamel BROUTHEN, Amir ALMAMMA, Massinissa ABOUD, Azzedine Idir AITSAID

Introduction

In the realm of Reinforcement Learning, while significant improvements have been

realized, issues with slow convergence and high sample complexity show that bet-

ter learning methods are necessary. Traditional Curriculum Learning (CL) intro-

duces a structured progression for agents but is hindered by the manual intricacies

of task sequence design. This research delves into Automatic Curriculum Learn-

ing (AutoCL)[4] as a pivotal solution, seeking to automate curriculum design and

optimize skill progression. Through AutoCL, we aim to enhance the efficiency of

RL agents, harnessing computational methodologies to dynamically adjust learning

trajectories based on evolving agent parameters and task demands. In this project

we compared the efficiency of training a PPO agent on a Rubic’s Cube environment

[2]using CL and AutoCL.

Background

Jumanji[2] Rubik’s Cube Environment: In our experimentation we used a a Jax JIT-

compatible Rubik’s Cube environment on a 3x3x3 size set-up. Reward function is

binary as shown in the figure below:

Figure 1. 2 Faces (Front and UP) of a 3x3x3 Rubik’s Cube Environment in Jumanji [?]

Curriculum Learning (CL)[1] is grounded in the principle of sequencing learn-

ing tasks to ensure progressive learning. Just as in human education where we

progress from simpler to more complex topics, Curriculum Learning presents mod-

els with easier tasks initially, gradually increasing the complexity. This ordered in-

troduction can lead to faster convergence and potentially better generalization in

neural networks. The main challenge lies in designing an appropriate curriculum,

as determining the sequence and complexity of tasks isn’t always straightforward.

Auto Curriculm Learning (AutoCL) for DRL is a family of mechanisms that auto-

matically adapt the distribution of training data by learning to adjust the selection

of learning situations to the capabilities of DRL agents[4]. It helps in efficiently im-

proving performance on specific tasks, guiding the learning process from easy to

hard tasks, training agents that can generalize across multiple situations, including

transitioning from simulations to real-world scenarios, and organizing open-ended

exploration for diverse behaviors. The figure below show how the teacher agent

can act on task MDPs to generate tasks.

Figure 2. ACL Task Generation for Data Collection [4]

Motivation

Training an agent to solve the Rubik’s cube presents a significant challenge due to

the sparse rewards and vast search space associatedwith it. When using a straight-

forward approach with a PPO agent [5], we found that the learning didn’t progress

effectively. Our hypothesis is that the key to addressing this problem lies in Cur-

riculum Learning (CL). Through the use of CL and eventually Automatic Curriculum

Learning (AutoCL), we aim to demonstrate that an agent can be trained more ef-

fectively, even in environments with sparse rewards and large search spaces.

Implementation

We have created an environment for the student, designed to interact with a spec-

ified teacher[3]. Within this environment, the reward system is based on the abso-

lute difference between the current mean reward and the previous mean reward

for a given task. The observation provided to the agent represents themean reward

of the task[3]. The environment also maintains a dynamic record of training data

and task-specific reward buffers. The Diagram below illustrates the teacher/stu-

dent interaction during training.

Figure 3. Teacher-Student interactions on Training

Experimentation

CL:We designed a standard curriculum where the level of difficulty increases from

1 to 5, we changed the number of training iterations in each level while observing

the reward improvement.

Auto-CL:We implemented an Online Teacher algorithm with ε-decay-greedy pol-
icy, then we tested the performance on the algorithm with different ε-greedy val-
ues, and gradually increasing the number of training iterations from 300 up to

6000, while observing the reward improvements, the experiments showed better

results an ε value decreasing from 0.3 to 0.0 at the end of training and with 1500

training iterations.

Comparative Results

Curriculum Learning (CL) demonstrates a distinct advantage over the conventional

Proximal Policy Optimization (PPO) method of problem-solving.

Moreover, when subjected to 1500 iterations, AutoCL with Online Algorithm in

epsilon decay-greedy policy exhibits superior performance in comparison to both

CL and direct resolving. Accompanying visual aids elucidate the progression of

reward during both the training and evaluative stages. An analysis of the

probability distribution reveals an intriguing pattern: in the initial phase of

training, there is a pronounced inclination for the teacher to sample from simpler

tasks. As training progresses, however, the teacher’s preference shifts towards

more intricate challenges.

Figure 4. Reward progress of naive learning on

1 to 5 scrambles of Rubik’s Cube in training

Figure 5. Comparing Auto-CL, CL and naive

learning on 50 iterations for each level

Figure 6. Reward progress of Auto-CL, CL and

naive learning on 1500 training iterations

Figure 7. Sampling probability of different

levels during Auto-CL training

Conclusion

In the course of our research, we concentrated our experimental adjustments pri-

marily on the variations in the number of scrambles. Nevertheless, our method-

ology demonstrated superior performance when compared to both Curriculum

Learning (CL) and naive learning techniques. These encouraging findings suggest

the potential for further exploration into the optimal selection of teacher policy,

particularly when augmented by greater computational resources.

References

[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings of the

26th Annual International Conference on Machine Learning, ICML ’09, page 41–48, New York, NY, USA, 2009.

Association for Computing Machinery.

[2] Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Vincent Coyette, Paul Duckworth, Laurence I. Midgley,

Tristan Kalloniatis, Sasha Abramowitz, Cemlyn N. Waters, Andries P. Smit, Nathan Grinsztajn, Ulrich A. Mbou Sob,

Omayma Mahjoub, Elshadai Tegegn, Mohamed A. Mimouni, Raphael Boige, Ruan de Kock, Daniel Furelos-Blanco,

Victor Le, Arnu Pretorius, and Alexandre Laterre. Jumanji: a diverse suite of scalable reinforcement learning

environments in jax, 2023.

[3] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher–student curriculum learning. IEEE

transactions on neural networks and learning systems, 31(9):3732–3740, 2019.

[4] Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Automatic curriculum

learning for deep rl: A short survey. arXiv preprint arXiv:2003.04664, 2020.

[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347, 2017.

Github: https://github.com/BrouthenKamel/Auto-CL School of AI Research Camp This work is made possible by the support of School of AI Algiers, Ecole Nationale Supérieure d’Informatique, Algeria

https://github.com

